They Might Be Giants: Divergence in Display Structure Between Two Island Populations of Galápagos Lava Lizards (Microlophus bivittatus)

JOSEPH M. MACEDONA1,6,7, DAVID L. CLARK2,6, MORGAN R. FONLEY3, JOHN W. ROWE2, EMMA E. NEYER2, EMILIO J. MANCERO4, AND CARLOS A. VALLE5

1 Department of Biology, Florida Southern College, Lakeland, FL 33801, USA
2 Department of Biology, Alma College, Alma, MI 48801, USA
3 Department of Mathematics, Alma College, Alma, MI 48801, USA
4 Biology Department, Grand Valley State University, Allendale, MI 49401, USA
5 Colegio de Ciencias Biológicas y Ambientales COCIBA & Galápagos Science Center GSC, Universidad San Francisco de Quito, Ecuador

ABSTRACT: The geographic isolation of conspecific populations can produce a diversification of signals through genetic drift, which may be reinforced by selection if populations (or sibling species) come into secondary contact. As conspicuous visual signals, bobbing displays of lizards have been described for numerous genera, and differences in display structure have been documented between some isolated conspecific populations. Although bobbing display structure has been detailed for several Galápagos Lava Lizard species (Microlophus sp.), intraspecific populations on different islands also exhibit various degrees of display structure divergence. In the present study, our goal was to determine if Microlophus bivittatus on San Cristóbal Island and a population on its adjacent islet of Isla Lobos possess differences in bobbing display structure. Interestingly, adult males on Isla Lobos exhibit gigantism compared to those on San Cristóbal, and the two populations have been isolated by the sea for several thousand years. We predicted that bobbing display speed would scale inversely with body size, such that displays would be detectably slower and longer in the supersized Isla Lobos males than those in the smaller San Cristóbal males. To test this prediction, we elicited displays from subjects by using a conspecific-nicking robot. We measured two displays from 16 subjects in each population by using conventional unit-based variables as well as Fourier transform-based variables. After determining correlations among display variables, we tested for differences in uncorrelated display unit durations between Isla Lobos and San Cristóbal males. We then quantified within-subject, among-subject, and between-population variance for all variables by using nested ANOVAs and tested if variance differed between study populations at any level. Next, we used principal component analysis to create a small number of normally distributed variables (i.e., the principal components) from our original variables. These principal components then were used as inputs for discriminant function analysis to classify displays to populations. Comparisons of display unit durations supported our prediction only for the initial bob in displays, which was longer in Isla Lobos males than in San Cristóbal males. Nevertheless, when we considered multiple variables collectively, discriminant function analyses classified displays to the correct population at a level significantly greater than chance in all four unit-based analyses and three of four discrete Fourier transform-based analyses. Finally, supported by data on sexual size dimorphism and genetic differences between pairs of M. bivittatus populations (FST), our results indicate that divergence in bobbing display structure can occur relatively quickly if populations are sufficiently isolated.

Key words: Discriminant function analysis (DFA); Discrete Fourier transform (DFT); Lizard displays; Principal component analysis (PCA); Population divergence; Sexual dimorphism index (SDI); Sexual size dimorphism (SSD)

The ritualized visual displays of animals that occur in the contexts of courtship and male–male competition are astonishingly varied (Darwin 1871; Bradley and Vehrencamp 2011; Eliaison 2018). In some highly diverse taxa, such as birds of paradise (Irestedt et al. 2009; Ligon et al. 2015), Anolis lizards (Losos et al. 1998; Losos 2009; Mahler et al. 2010, 2013), and peacock spiders (Girard et al. 2021), species-specific displays of color and motion are prime examples of sexual selection and, frequently, of allopatric speciation (Tinghittella et al. 2018). The geographic isolation of conspecific populations also can produce visual signal differentiation through genetic drift (e.g., Kronforst and Gilbert 2008). Examples of population divergence in visual signals are numerous, but a few notable cases in amphibians include color pattern variation in the strawberry poison frog (Oophaga pumilio; Siddiqui et al. 2004; Rudh et al. 2011; Cummings and Brotherson 2013; Ghera et al. 2013; Richards-Zawacki and Cummings 2014; Guillery et al. 2019) and in the dyeing poison frog (Dendrobates tinctorius; Noonan and Gaucher 2006). Among invertebrates, color and motion signal variations are particularly striking in the Arizona sky island jumping spider (Habronattus pugilis; Mistaj and Maddison 2002, Elías et al. 2006). In addition, visual signal divergence may be reinforced if formerly isolated populations or sibling species come into secondary contact, as has been argued for (1) the facial color patterns of guenons (Allen et al. 2014), (2) dewlap color and electrophoretic variation in the Anolis brevicristis complex (Webster and Burns 1973; Lambert et al. 2013) and, at least in part, (3) dewlap color and genomic variation in Anolis discistichus (Ng and Glor 2011; Ng et al. 2017).

As conspicuous visual signals, species-specific bobbing displays have been described for numerous lizard genera, and the divergence of display structure has been documented among conspecific populations within many of those genera (Supplemental Table S1, available online). Display structure can change via modifications in the elevation and speed of head vertical displacement, as well as in the complexity of the head motion sequence (Carpenter 1966; Jensen 1977). Conventionally, lizard bobbing displays are visualized by plotting them as display action pattern graphs (Carpenter and Grubitz 1961). Once graphed, a display is parcelled into units, where attributes such as unit durations, bob amplitudes, and other features may be measured (Clark et al. 2015). An alternative approach that we have used previously to quantify lizard
bubbling displays is Fourier transform (Fleishman 1986, 1988; Macedonia et al. 2019, 2021). This method allows us to analyze displays as a whole (cf., units), by deconstructing them into a series of sinusoidal waves.

Bobbing display structure is highly distinctive among Galápagos Lava Lizard species (Carpenter 1966; Clark et al. 2015, 2016; Macedonia et al. 2019). More subtle structural differences also occur, however, between some pairs of geographically separated conspecific populations (Carpenter 1966; Clark et al. 2015). For example, although no differences in display structure have yet been reported for Microlophus albemarlensis on Isabella and Fernandina Islands (population divergence < 30 kyr; Benavides et al. 2009), slight structural differences occur between Microlophus jacobi on the islands of Santiago and Rábida (estimated time since divergence unknown or unpublished) and are moderate between Microlophus indefatigabilis on the islands of Santa Cruz and Santa Fé (population divergence approximately 400 kyr; Benavides et al. 2009; Clark et al. 2015).

In this study we compare bobbing display structure in M. bivittatus on the island of San Cristóbal and on its adjacent islet, Isla Lobos. The time of divergence for these two populations has not been established, but extrapolation from Ali and Atchison (2014: their Fig. 2) and estimates of sea level rise during the past 5 kyrr (Poulos et al. 2009) suggest that the two locations are separated by just a few thousand years. Despite being divided by a water channel only about 300-m wide on average, adult male M. bivittatus individuals are strikingly larger on Isla Lobos than those on San Cristóbal (Supplemental Fig. S1, available online). Thus, in addition to display structure, we compare body size and sexual size dimorphism (SSD) of our study species on the two islands. The island-specific differences in male body size led us to consider that bobbing display speed might, at least to some degree, scale inversely with size (see Dial et al. 2008 for a review). We, therefore, predicted that the supersized Isla Lobos males would exhibit longer display unit durations and greater total display durations than the smaller-bodied San Cristóbal males.

Materials and Methods

Subjects and Study Area

Microlophus bivittatus is restricted to the Galápagos Island of San Cristóbal and its nearby islet, Isla Lobos. The direct distance between adjacent coastlines of the two islands ranges roughly from 165 to 345 m (Google Maps 2023; Google, Mountain View, CA). On San Cristóbal, *M. bivittatus* inhabits flat coastal beach areas as well as upland habitats. These habitats exhibit variable degrees of vegetation cover and vertical spatial stratification, as determined by extensive lava rock formations, shrubs, and forest. Our study of bobbing display behavior on San Cristóbal was conducted in and around Puerto Baquerizo Moreno (longitude: −90.61434, latitude: −0.09029; datum WGS84 in all cases). For the body size and SSD comparisons, we captured males and females by noose or by hand on San Cristóbal in a beach habitat at Playa Ochoa (longitude: −89.57083, latitude: −0.86333) and an upland habitat at Punta Carola (longitude: −89.61027, latitude: −0.89111). On Isla Lobos (longitude: −89.56583, latitude: −0.85583), our study population primarily occupied a sandy beach habitat with scattered small rocks, dense low-shrub vegetation, and few trees.

In southwestern San Cristóbal, Playa Ochoa is approximately 1.0 km southwest of Isla Lobos, whereas Punta Carola is about 6.4 km southwest of Isla Lobos (Google Maps 2023; Google).

For each lizard, we obtained snout–vent length (SVL) to the nearest 1 mm by using a plastic ruler and calculated SSD indices for lizards at each location (Gibbons and Lovich 1990; Lovich and Gibbons 1992). We measured 121 females and 104 males across the 3 study sites, totaling 225 individuals. Each lizard received a unique passive integrated transponder tag (HTP9; Biomark) and was released unharmed at the site of capture within hours. Using JMP (SAS Institute, Cary, NC), we natural log transformed SVL data and analyzed them with a 2×3 factorial ANOVA, with sex and study location as main effects, and their interaction. Post hoc comparisons were conducted using multiple contrasts of adjusted means.

Bobbing Display Data Collection

Microlophus bivittatus produces the following two types of bobbing displays: brief two-bob displays, which occur immediately before locomotion (Clark et al. 2017, 2019, 2023; Macedonia et al. 2019), and species-specific signature displays (Stamps and Barlow 1973; Jensen 1977, 1978), which are produced by most Iguanidae taxa during same-sex competition, courtship, and male non-directed broadcast of territorial ownership. The present study is restricted to an analysis and comparison of signature displays from male *M. bivittatus* on San Cristóbal and on Isla Lobos.

Bobbing displays were recorded with a video camera (Panasonic HC-WX970 WiFi camcorder) mounted on a tripod, as well as a cell phone camera (Samsung S21 + 5G) with a high-resolution video format (H.264). For the hand-held phone camera, any motion that was not due to lizard vertical body displacement during bobbing was corrected manually frame-by-frame to a reference pixel by using the image stabilization filter in Apple iMovie (v10.2.3; Apple Inc., Cupertino, CA). This process provided a video image as stable as that obtained with a tripod-mounted video camera.

We cataloged the occurrence of bobbing displays while reviewing robot trial footage and extracted and saved display clips as MP4 files in QuickTime Player (v10.5; Apple Inc.). Next, the video clips were imported into an open-source video analysis program, Tracker (v6.0.1; Brown et al. 2021). We used the object-tracking function and gathered frame-by-frame vertical coordinates of head motion by placing the cursor over a subject’s eye and clicking a computer mouse. The vertical coordinates then were exported to Microsoft Excel (v26.57, Microsoft Corporation, Redmond, WA) where time (x-axis) and amplitude (y-axis) measurements of the displays could be made.

We selected two signature displays of high video quality (i.e., close focus of a nonobscured subject in response to a robotic conspecific) for 16 males of each study population to compare display structure. Although male and female lava lizards from the same population produce structurally identical signature displays (Carpenter 1966; Clark et al. 2017, 2023), we chose males as subjects because the large difference in male body size on the two islands allowed us to test our prediction that display speed and body size would be inversely related.
Measurement of Display Structure

We divided the signature display of *M. bivittatus* into five units, where Units 1, 3, and 5 contain bobs and Units 2 and 4 are pauses between bobs (Fig. 1). Following Macedonia et al. (2019), for each display, we measured display duration, each unit’s duration, and the amplitude of the highest bob in each of Units 1, 3, and 5. To obtain amplitude values, each display was standardized to a scale of 0–1 (Fig. 1). The standardization was achieved by subtracting the smallest y-axis value (i.e., vertical head motion) from every other value in the display, followed by dividing each resulting value by the largest y-axis value in the display. This process ensured that all bobbing displays would be measured on the same scale regardless of their distance from the video camera when recorded.

As a second approach to quantify bobbing display structure, we chose Fourier transform, which is a method that we have used in prior studies but that otherwise has been rarely used in research of reptile stereotypic motion. Some notable exceptions include Fleishman (1986), in which the fast Fourier transform (FFT) was used to explore the similarity between the movement of wind-blown vegetation and the cryptic forward motion of the vine snake (*Oxybelis aeneus*), which feeds primarily on *Anolis* lizards (Fleishman 1985). In another study, Fleishman (1988) used FFT to examine the relationship between the smooth sinusoidal motion of vegetation oscillating in the wind and the contrasting square wave motion of *Anolis auratus* bobbing displays. Previously, we have used Fourier transform to extract 13 variables (Table 1) from bobbing displays of *Microlophus* sp. (Macedonia et al. 2019) and *Anolis* sp. (Macedonia et al. 2021). As in those studies, for each display, we use FFT to compute discrete Fourier transform (DFT) in MATLAB (vR2016b; MathWorks®, Natick, MA). The DFT divides each display into a series of sinusoidal waves varying in frequency and amplitude, of which the sum recreates the original display. Our amplitude threshold was reduced to 75% of the mean amplitude to exclude spurious noise. A comparison of reverse transforms ensured that noise filtering had not oversimplified displays and that they still contained their distinctive features. The variable most anticipated to distinguish population-specific bobbing display traits was principal frequency, as it describes the most prominent trigonometric function underlying display structure (see Macedonia 2019, 2021). Four additional variables that covered low (0–5 Hz), middle (5–10 Hz), and high (10–15 Hz) frequency ranges (i.e., 12 total variables) further characterized the display transforms (Table 1). As results from Macedonia et al. (2021) showed that neither the unit-based approach nor the DFT-based method was consistently superior in detecting display structure differences among taxa, we used both methods here.

Table 1.—Names and definitions of the 13 Fourier transform-based variables used to quantify signature displays in *Microlophus bivittatus*. Table after Macedonia et al. (2019).

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Variable Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Principal frequency</td>
</tr>
<tr>
<td>2</td>
<td>Peak frequency</td>
</tr>
<tr>
<td>3</td>
<td>Partial sum</td>
</tr>
<tr>
<td>4</td>
<td>Percentage of sum</td>
</tr>
<tr>
<td>5</td>
<td>Mean amplitude</td>
</tr>
<tr>
<td>6–9</td>
<td>Peak frequency, partial sum, percentage of sum, mean amplitude 5–10 Hz</td>
</tr>
<tr>
<td>10–13</td>
<td>Peak frequency, partial sum, percentage of sum, mean amplitude 10–15 Hz</td>
</tr>
</tbody>
</table>

![Figure 1](image-url)
Analysis of Display Structure

Our analytical approach follows a sequence of procedures like those used in our recent comparative studies of bobbing display structure (Macedonia et al. 2015, 2019, 2021). First, for our nine unit-based variables, we used descriptive statistics to determine unit duration mean, range, coefficient of variation (CV), and percent duration (we forwent calculating descriptive statistics for our 13 DFT variables). An exploratory data analysis using Spearman rank correlation revealed that some of our unit-based variables were significantly correlated. We, therefore, restricted between-population tests of significance to mean unit durations (one value per subject), as durations of these five variables (Units 1–5) were uncorrelated with one another in each population (Supplemental Table S2, available online). Second, we used balanced nested ANOVAs to partition display variance into uncorrelated with one another in each population (Supplemental Table S2, available online). The use of balanced nested ANOVAs allowed us to determine how accurately each display could be assigned to the correct population by the discriminant functions. In SPSS, DFA generates the following two versions of the analysis: an original analysis, in which all cases (i.e., bobbing displays) are used to create the discriminant functions, and a leave-one-out cross-validation analysis, in which all cases except the case being classified are used to create the functions. The cross-validation analysis, therefore, produces a more generalizable result.

We used our suite of methods (nested ANOVA, PCA, and DFA) for separate analyses of our unit-based variables and DFT variables. Analyses first were run using values from measurements of two displays per subject (32 cases per population) and then were run again using measurement means (16 cases per population). We conducted the mean value analyses to eliminate the possibility of autocorrelation effects that might occur when including more than one display per subject.

Nested ANOVAs were carried out using a purposed Excel spreadsheet (http://udel.edu/~mcdonald/statnested.html) from the Handbook of Biological Statistics (McDonald 2014). Our PCA and DFA analyses were conducted in SPSS (v21.0, IBM Inc., Armonk, NY). Correlations among variables were examined by creating correlation matrices in VassarStats (available at http://www.vassarstats.net) separately for our unit-based and DFT variables. For our two study populations, (1) correlations between variable pairs were tested for significance using Spearman rank correlation, (2) uncorrelated mean unit durations of displays were compared using Mann–Whitney U tests, and (3) DFA classification success was tested using 2×2 contingency tables with Fisher’s exact test in Social Science Statistics (https://www.socscistatistics.com).

Results

Body Size and Sexual Size Dimorphism

Across M. bivittatus populations, natural log-transformed SVL was larger in males than that in females ($F_{1,220} = 265.7$, $P < 0.0001$) and was larger in Isla Lobos lizards than that in lizards on San Cristóbal at Punta Carola and Playa Ochoa ($F_{2,220} = 139.4$, $P < 0.0001$ overall and in both contrasts of adjusted means). We found a significant sex by location interaction ($F_{2,220} = 139.4$, $P < 0.0001$) in which the mean natural log-transformed SVL was larger in both sexes on Isla Lobos than at Punta Carola and Playa Ochoa ($P < 0.0001$ in all four contrasts of adjusted means; Fig. 2).

Sexual size dimorphism indices (SDIs) revealed that males were, on average, 15% larger than females at both Punta Carola and Playa Ochoa and were 52% larger than females at Isla Lobos (Table 2). Our findings are consistent with Rensch’s Rule, which states that SSD increases with size when males are larger than females (see Cox et al. 2003, 2007; and Rötting 2007 for reviews).

Bobbing Display Structure: Unit-Based Variables

As anticipated, descriptive statistics revealed strong similarities between the populations on San Cristóbal (Puerto Baquerizo Moreno) and Isla Lobos in our nine unit-based measures of bobbing displays. In both populations, bob unit durations (Units 1, 3, and 5) were stereotyped (CVs < 35%, Barlow 1977), whereas pause unit durations (Units 2 and 4) were more variable (Table 3). All bob unit peak amplitudes likewise were stereotyped, most notably Unit 5, for which the CV was less than 1% in the San Cristóbal population (Table 3). Results of Mann–Whitney U tests on uncorrelated mean unit durations (i.e., Units 1–5) revealed between-population differences in the following two units: Unit 1 was longer ($n = 16$, $U = 58$, $P = 0.009$) and Unit 4 was shorter ($n = 16$, $U = 65.5$, $P = 0.02$) in the Isla Lobos population than in the San Cristóbal population (Table 3).

Nested ANOVAs revealed that most variance in display unit durations and bob peak heights occurred within-subjects, followed by among-subject variation (Fig. 3a,b). However, two variables that were not significantly correlated in either population (Supplemental Table S2) accounted for a substantial amount of between-population variance, as follows: Unit 1 duration (26.33% of this variable’s total variance, $F_{1,30} = 9.154$, $P = 0.005$; Fig. 3a) and Unit 5 peak amplitude (11.91% of this variable’s total variance, $F_{1,30} = 4.702$, $P = 0.04$; Fig. 3b).

Individual measurements from two displays.—A PCA of unit-based variables, in which the measurements from two displays were entered for each subject, generated four PCs that accounted for roughly 79% of the data variance (Supplemental Table S3, available online). Rotated PC1 explained nearly 23% of that variance (Supplemental Table S3) and was most heavily weighted on display duration and Unit 1 duration (Supplemental Table S4, available online). A DFA on the four PCs generated a single function (Supplemental Table S5, available online) that was most heavily weighted on PC3 (which was most strongly influenced by Unit 1 peak amplitude) followed by PC1 (Supplemental Tables S4, S5). Thus, both attributes of Unit 1—duration in PC1 and peak amplitude in PC3—were particularly important in the DFA. Classification success was moderate for...
both populations, with approximately 72% correct classification of 32 displays from San Cristóbal subjects and about 66% correct classification of 32 displays from Isla Lobos subjects (Table 4). The ability of the DFA to classify displays to the correct population differed from random assignment (Fisher’s exact test, \(P = 0.005 \)). In the cross-validation analysis, only two fewer cases were correctly classified to the San Cristóbal population (66%) than in the original analysis (72%) and 66% of cases again were correctly assigned to the Isla Lobos population (Fisher’s exact test, \(P = 0.02 \); Table 4).

Measurement means from two displays

When we used a mean value for each unit-based variable (averaged across each subject’s two displays), a PCA generated four components that explained over 81% of the data variance. PC1 accounted for 25% of that variance (Supplemental Table S6, available online), where Display duration and Unit 1 duration again were heavily weighted, along with Unit 2 duration (Supplemental Table S7, available online). In a DFA on the four PCs, PC2 (primarily influenced by the peak amplitudes of Units 1 and 5) was the strongest component in the discriminant function, followed by PC1 (Supplemental Tables S7, S8). In both the original and cross-validation analyses, DFA correctly classified 75% of the San Cristóbal displays and 69% of the Isla Lobos displays—a result that differed from a random assignment of displays to population (Fisher’s exact test, \(P = 0.03 \); Table 5). Thus, whether we used measurements from both displays of each subject or used each variable's mean value, DFA correctly predicted the population from which displays originated from 66% to 75% of the time.

Bobbing Display Structure: Fourier Transform-Based Variables

As with our unit-based variables, nested ANOVAs on 13 DFT variables revealed within-subject variance to be largest, followed by among-subject variance, and finally by between-population variance (Fig. 3c). However, the following two uncorrelated DFT variables (Supplemental Table S9, available online)
Table 3.—Between-population comparisons of bobbing displays from 16 males on the San Cristóbal mainland and 16 males on the adjacent islet of Isla Lobos. Each subject contributed a single mean value per parameter. Unit durations (Dur) in seconds. Unit Peak is an abbreviation for standardized peak amplitude (see text). Percent duration (% Dur) is a unit’s mean duration as a proportion of all five unit’s mean durations, which together sum to 100%. CV (%) = coefficient of variation. CVs with values of <35% meet Barlow’s (1977) criterion of highly stereotyped behavior patterns.

| Unit | San Cristóbal | | | | | | | Isla Lobos | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | Mean | Range | CV (%) | % Dur | Mean | Range | CV (%) | % Dur |
| U1 Dur | 0.150 | 0.100–0.217 | 23.52 | 13.70 | 0.184 | 0.117–0.317 | 29.99 | 17.22 |
| U2 Dur | 0.092 | 0.033–0.200 | 50.27 | 9.54 | 0.150 | 0.000–0.300 | 69.07 | 13.67 |
| U3 Dur | 0.502 | 0.467–0.834 | 15.75 | 55.60 | 0.567 | 0.351–0.750 | 16.06 | 49.66 |
| U4 Dur | 0.033 | 0.000–0.100 | 75.35 | 3.69 | 0.000 | 0.000–0.300 | 166.60 | 1.55 |
| U5 Dur | 0.184 | 0.134–0.217 | 10.94 | 17.49 | 0.200 | 0.150–0.267 | 15.90 | 17.90 |
| U1–5 Dur | 1.075 | 0.834–1.317 | 12.12 | — | 1.150 | 0.900–1.567 | 14.05 | — |
| U1 Peak | 0.321 | 0.262–0.780 | 24.52 | — | 0.609 | 0.278–1.000 | 34.22 | — |
| U3 Peak | 0.744 | 0.664–0.978 | 12.94 | — | 0.818 | 0.544–0.963 | 14.15 | — |
| U5 Peak | 1.000 | 0.974–1.000 | 0.90 | — | 1.000 | 0.775–1.000 | 7.46 | — |

Online measurements exhibited considerable between-population differences: low peak frequency (14.67% of this variable’s total variance, $F_{1,30} = 5.434; P = 0.03$) and low frequency percentage of sum (24.32% of this variable’s total variance, $F_{1,30} = 7.865; P = 0.009$; Fig. 3c).

Individual measurements from two displays.—A PCA of measurements from two displays of each subject produced five PCs. These five components explained nearly 85% of the total display variance (Supplemental Table S10, available online). PC1, which accounted for over 23% of that variance, was most strongly weighted on three of our four high-frequency variables (Supplemental Tables S10, S11, available online). A DFA on the five PCs produced a single discriminant function (Supplemental Table S12, available online) that correctly classified roughly 66% of displays to the correct population (Fisher’s exact test, $P = 0.02$; Table 6). In the cross-validated analysis, about 64% of displays were correctly classified (Fisher’s exact test, $P = 0.04$; Table 6). In contrast to our results for unit-based variables, outcomes of these two DFAs were biased in favor of Isla Lobos displays (72–75% correct classification) over those from San Cristóbal subjects (56.3% correct classification; Table 6).

Measurement means from two displays.—Finally, a PCA of DFT measurements averaged across subjects’ two displays produced four PCs (Supplemental Table S13, available online). Together, these components accounted for about 79% of bobbing display variance, with PC1 and PC2 independently explaining nearly 24% of that variation each (Supplemental Table S13). As in the analysis where DFT measures from both subjects’ displays were used, three of our four high-frequency variables again were heavily weighted on PC1 (Supplemental Table S14, available online). A DFA on the four PCs produced a single function (Supplemental Table S15, available online) that was most strongly influenced by PC2, which itself was heavily weighted on principal frequency and a mix of low- and mid-frequency variables (Supplemental Table S14). This discriminant function assigned displays to the correct population 75% of the time in the original analysis (Fisher’s exact test, $P = 0.01$; Table 7), without population bias. The cross-validated analysis was less successful than the original, however, with displays being assigned to the correct population about 66% of the time (Fisher’s exact test, $P = 0.16$; Table 7). In summary, by using measurements from both displays of subjects, we found that DFA assigned approximately 56–75% of displays to the correct population, whereas when using mean values of each DFT measure, DFA was slightly more successful in classifying approximately 63–75% of displays to the correct population.
Summary of Population Differences in *M. bivittatus* Bobbing Display Structure

A significantly longer Unit 1 duration in the Isla Lobos population supported our hypothesis that displays would be performed more slowly than the San Cristóbal population. Yet, Unit 4 duration (a pause between bobs) ran counter to our hypothesis, and durations of units 2, 3, and 5 did not differ between populations. Thus, on the whole, we did not find the inverse scaling of body size and display speed that we had predicted.

Nested ANOVA revealed substantial between-population variance in Unit 1 duration which, together with display duration, was of primary importance in our unit-based DFAs. Whether we used a measurement value for each variable from both displays of subjects (32 displays per population) or used mean values from each subject’s two displays (16 displays per population), DFA assigned displays to the correct population at a level significantly greater than random chance in every analysis.

Similar to our results with unit-based measures, nested ANOVAs showed that most variance in DFT variables fell within and among subjects. Yet, between-subject values for two variables, low peak frequency and low frequency percentage of sum, differed significantly between populations. Although it is unclear why DFA was biased in correctly classifying displays to the Isla Lobos population when values from both displays of subjects were used (Table 6), in all but one comparison (i.e., cross-validation; Table 7) our DFAs assigned displays to the correct population at a level significantly greater than chance. Taken together, we find these results remarkable, given the very close geographic proximity of the two islands and the short amount of time that the two populations have been diverged (almost certainly < 5 kyr).

Sexual Size Dimorphism (SSD) and Display Repertoire Size

Like most other territorial lizard taxa, *Microlophus* sp. exhibits a variety of nonbobbing displays and postures in the contexts of courtship and territory defense. Although the focus of the present study is on bobbing display structure, in a prior study (Clark et al. 2023) we analyzed nonbobbing displays in comparing subjects’ responses to the manipulation of shoulder epaulets (a potentially sexually selected ornament; see below) in robotic conspecifics. Seven types of nonbobbing displays (termed “display modifiers” by Jenssen 1977, 1978) were observed and comprised an additive composite response score that we calculated for our Puerto Baquerizo Moreno subjects (Clark et al. 2023).

Previously, it has been argued for the Iguania that nonbobbing display diversity determines lizard display repertoire complexity and that complexity is positively correlated with male-biased...
Table 4.—Discriminant function analysis of four PCs derived from six unit duration variables and three standardized peak amplitude variables measured in bobbing displays of two Microlophus bivittatus populations. In this analysis, 16 males from each population contributed 2 values (one from each display) for each of the 9 variables measured in their 2 displays. Data were analyzed as a 2×2 contingency table with Fisher's exact test. In the cross-validated analysis, each case was classified by the function(s) derived from all cases other than that case. Number and percentage of correct display assignments are in bold text.

<table>
<thead>
<tr>
<th>Original analysis</th>
<th>Predicted group membership</th>
<th>F value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>San Cristóbal</td>
<td>Isla Lobos</td>
</tr>
<tr>
<td>San Cristóbal</td>
<td>23 (71.9%)</td>
<td>9 (28.1%)</td>
</tr>
<tr>
<td>Isla Lobos</td>
<td>11 (34.4%)</td>
<td>21 (65.6%)</td>
</tr>
<tr>
<td>Cross-validation</td>
<td>21 (65.6%)</td>
<td>11 (34.4%)</td>
</tr>
</tbody>
</table>

a 68.8% of cases in the original analysis were classified correctly to population.
b 65.6% of cross-validated cases were classified correctly to population.

Table 6.—Discriminant function analysis of 5 principal components derived from 13 DFT variables measured in bobbing displays from 2 populations of Microlophus bivittatus. In this analysis, 16 males from each study population contributed 2 values (one from each display) for each of the variables measured in their 2 displays. Legend as in Table 4.

<table>
<thead>
<tr>
<th>Original analysis</th>
<th>Predicted group membership</th>
<th>F value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>San Cristóbal</td>
<td>Isla Lobos</td>
</tr>
<tr>
<td>San Cristóbal</td>
<td>18 (56.3%)</td>
<td>14 (43.7%)</td>
</tr>
<tr>
<td>Isla Lobos</td>
<td>8 (25.0%)</td>
<td>24 (75.0%)</td>
</tr>
<tr>
<td>Cross-validation</td>
<td>18 (56.3%)</td>
<td>14 (43.7%)</td>
</tr>
</tbody>
</table>

a 65.5% of cases in the original analysis were classified correctly to population.
b 64.1% of cross-validated cases were classified correctly to population.

Bobbing Display Structure Divergence: Comparisons with Anolis and Future Directions

In several previous studies of the large lizard genus Anolis, geographically disjunct conspecific populations as well as geographically adjacent cryptic (sibling) species have been shown to differ in bobbing display structure (e.g., Garcia and Gorman 1968). Below we summarize two of those studies and ask how their findings compare with results from our present work. We then propose future research that could address some of the gaps in our knowledge of display divergence in Lava Lizard populations.

First, Jenssen (1981) found that although Anolis grahami grahami from southeast (Kingston) and central (Mandeville) Jamaica exhibited the same bobbing display structure, this structure differed considerably from that of conspecifics on the Jamaican West coast (Negril). Bobs in the Kingston and Mandeville populations were plateau shaped due to long pauses at the apices of the bobs, whereas those in the Negril population were spike shaped due to the absence of pauses during bobs. More recently, it was shown that a population of A. g. grahami on the northcentral coast of Jamaica (Discovery Bay), which lies longitudinally between Kingston and Negril, performed displays with bob morphology intermediate between plateau shaped and spike shaped (i.e., flat-topped spikes, Macedonia et al. 2021: their Fig. 4). Interestingly, chromosome number in A. g. grahami covaries with bob structure along an

Table 7.—Discriminant function analysis of 4 principal components derived from 13 DFT variables measured in bobbing displays from 2 populations of Microlophus bivittatus. In this analysis, 16 males from each study population contributed 1 mean value for each of the variables measured in their 2 displays. Legend as in Table 4.

<table>
<thead>
<tr>
<th>Original analysis</th>
<th>Predicted group membership</th>
<th>F value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>San Cristóbal</td>
<td>Isla Lobos</td>
</tr>
<tr>
<td>San Cristóbal</td>
<td>12 (75.0%)</td>
<td>4 (25.0%)</td>
</tr>
<tr>
<td>Isla Lobos</td>
<td>4 (25.0%)</td>
<td>12 (75.0%)</td>
</tr>
<tr>
<td>Cross-validation</td>
<td>10 (62.5%)</td>
<td>6 (37.5%)</td>
</tr>
</tbody>
</table>

a 75.0% of cases in the original analysis were classified correctly to population.
b 65.6% of cross-validated cases were classified correctly to population.
east–west longitudinal transect, as follows: (1) Kingston, plateau-shaped bobs and $2n=32$; (2) Discovery Bay, flat-topped, spike-shaped bobs and $2n=34$; and (3) Negril, spike-shaped bobs and $2n=36$ (see Macedonia et al. 2021). It seems possible that at least some of these populations may be sibling species. Notably, it has yet to be examined if display structure experiences character displacement where these genetically distinct A. g. grahimi populations come into secondary contact in Jamaica.

As a second example, Jenssen and Gladson (1984) investigated bobbing displays in three Haitian sibling species of the Anolis brevirostris complex (once considered conspecifics). They found the largest differences in display structure at the intersection of two species’ distributions, namely, Anolis websteri at Montrouis and Anolis caudalis at Trou Forban. This finding mirrored genetic and dewlap color differences, where males at Montrouis possessed bright orange dewlaps but those in nearby Trou Forban exhibited pale, yellowish-white dewlaps (Webster and Burns 1973; Lambert et al. 2013). The authors of these studies have argued that the patterns of display variation (motion and color) and genetic differentiation support the hypothesis of character displacement via reinforcement, where differences are most pronounced in secondary contact.

Although other comparisons of Anolis bobbing display structure at the population level exist (e.g., Lovern et al. 1999; Macedonia and Clark 2001, 2003; Macedonia et al. 2015), how do the summarized examples above inform the findings of the present study and frame questions for future research? First, the work on A. g. grahimi in Jamaica suggests a generalizable relationship between the geographic distance of populations and the degree of display structure divergence. As our bobbing display data for M. bivittatus on San Cristóbal originate from one sampling area, a test that compares display structure covariance with geographic distance currently is not possible. Ideally, such tests would use populations on San Cristóbal for which we already have morphometric and genetic data (see below).

Likewise, results of multiple studies have supported the argument that, due to reproductive reinforcement, Haitian populations of Anolis sibling species in secondary contact (A. websteri and A. caudalis) exhibit greater display structure divergence than populations of the same two sibling species somewhat further from each other. Although A. bivittatus is allopatric with all other A. bivittatus somewhat further from each other. Although A. g. grahimi populations are genetically distinct, we do not yet know if reproductive reinforcement has occurred between any populations that have been isolated on San Cristóbal for a period of geological time but that now are in secondary contact. Nevertheless, our bobbing display data from two M. bivittatus populations that are approximately 10 km apart (Puerto Baquerizo Moreno and Isla Lobos) offer a starting point for among-population comparisons of display structure. Importantly, microsatellite data have shown that pairwise genetic differences (FST) between populations sampled on Isla Lobos and four San Cristóbal locations range from 0.021 to 0.194, with a difference of 0.135 between subjects on Isla Lobos and those at Puerto Baquerizo Moreno where we recorded lizard displays (A.M. Troya Zuleta and C.A. Valle, personal observations). These genetic data provide an opportunity to determine how closely display structure differences reflect genetic differences among M. bivittatus populations, in a manner similar to Anolis research in Jamaica and Haiti.

Finally, the distributions of numerous species pairs of Microlophus overlap or abut on the western edge of South America (for distribution maps see Toyama and Boccia 2022), including three species for which bobbing display structure is known (Clark et al. 2015). Thus, the Galápagos Islands and coastal South America offer fertile ground for future research on genetic differentiation and bobbing display structure divergence in Microlophus.

Acknowledgments.—We thank J.P. Muñoz, Administrador e Investigador, and S. Sotomba of the Galápagos Science Center (San Cristóbal). We are grateful to the Parque Nacional Galápagos Ecuador, San Cristóbal, for their support and permission to conduct research on Galápagos Lava Lizards (Research Permit: FC-68-21 #162). R. Clark and K. Stricker were fundamental in the production and appearance of the lizard models used as display-eliciting stimuli. All contributors to this study observed ethical and legal guidelines and regulations as specified in the ASIH-HL-SSAR Guidelines for Use of Live Amphibians and Reptiles in Field Research. No animals were collected for this study.

Supplemental Material

Supplemental material associated with this article can be found online at PROVIDE-HL-URL-HERE.S1–S7.

Literature Cited

Accepted on 10 September 2023
Published on 00 Month 2023
Associate Editor: Ryan Taylor
AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

AQau— Please confirm the given-names and surnames are identified properly by the colours.

- □=Given-Name, ■= Surname

The colours are for proofing purposes only. The colours will not appear online or in print.

AQ1—For consistency, “KY” was changed to “kyr”; please confirm that your intent was retained or provide a definition for KY at first use. Copy editor

AQ2—Provide static URL for Supplemental Materials linked to this article.